

Self-Sensing Fiber-Reinforced Composites PI: Christopher C. Bowland Oak Ridge National Laboratory

Project ID: mat173

Annual Merit Review

June 3, 2020

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

2020 DOE Vehicle Technologies Office

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Start Date: October 2019
- End Date: September 2022
- Percent Complete: 25%

Budget

- Total project funding
 - DOE: \$300k
 - Industrial cost share: \$150k

Partners

- CRADA with Dronesat, LLC
- Project Lead: ORNL

Barriers and Technical Targets

- Critical Challenge for carbon fiber composites: "Joining, NDE, Life Monitoring and Repair"
- "The ability to predict performance for material, joints, and parts would allow for optimized design while minimizing cost"
- Structural health monitoring would help inform models for in-service performance prediction

^{*}From "Materials: Materials Technical Team Roadmap" (2017), by U.S. DRIVE Partnership

Relevance

Impact

- Multifunctional composite with structural health monitoring offers:
 - Increased composite safety
 - Improved estimates of maintenance requirements
- The focus is on cargo transportation and infrastructure monitoring, it also opens other markets:
 - Automotive industry (electric automobile battery enclosures and compressed natural gas storage tanks)
 - Oil and natural gas distribution (composite pipelines and pipeline repairs)
 - Infrastructure repair (patches to concrete bridge pillars)
 - Military (unmanned aerial vehicles with extended flight times)
 - Space vehicles (cryogenic fuel tanks)

Objectives

- Use a roll-to-roll fiber processing method to add various nanoparticles to the fiber surface
- Demonstrate a scalable, multifunctional composite with in-situ sensing capabilities as well as improved mechanical performance

Approach

- Roll-to-roll dip coating deposition process to integrate nanoparticles into the sizing for improved mechanical strength and sensing functionality
 - Concentration of nanoparticles can be easily varied
 - Compatible with many different nanoparticles and fibers
- Use commercially available products combined in a mutually beneficial approach
- Commercially sourced products makes scale-up feasible

TiO₂ nanoparticle (30 nm) coated carbon fiber

Scale bars are 5 µm

Accomplishments

Interlaminar Shear Strength Testing

- Unidirectional composites were fabricated using a filament winding technique
- Baseline: 77.3 MPa (0 wt% nanoparticles)
- Highest performing composite: 88.7 MPa (1 wt% nanoparticles)
- Maximum increase of 14.7% increase in interlaminar shear strength so milestone was achieved

Milestone: Fabricate multifunctional composites and perform mechanical testing (12/31/2019)

Criteria: Short beam shear test should show an interlaminar shear strength improvement of at least 10%

Interlaminar shear strength testing: a) representative stress-strain curves and b) average short-beam shear strength (Error bars signify one standard deviation)

Accomplishments

Structural Health Monitoring

- Out-of-plane through thickness electrical resistance was measured of a cantilevered beam during cyclic strain events
- Gauge factor for each composite was measured over a range of strains to quantify the sensor sensitivity

Average relative resistive change over a strain range

Structural health monitoring tests showing straining of a composite beam with corresponding electrical resistance changes

Accomplishments

Structural Health Monitoring

- Baseline gauge factor: 2.49 (0 wt% nanoparticles)
- Highest gauge factor: 7.14 (2.5 wt% nanoparticles)
- Maximum gauge factor increase of 187% so milestone was achieved

Average gauge factor for each composite over the entire strain range

Milestone: Characterize the active sensing capabilities of the multifunctional composites (6/30/2020)

Criteria: Sensor testing in the dynamic mechanical analyzer should reveal at least a 20% improvement in sensitivity

The average interlaminar shear strength versus the average gauge factor

Collaboration/Partner

Dronesat, LLC

- Designed and patented (patent pending) an Unmanned Aerial System (drone), powered from a ground based electrical infrastructure for sensor or cargo configurations
- Identify sensor capability that makes aware, timely information about critical components so actionable decisions can be quickly made about the airworthiness of vehicles.
- The ultimate result would reduce maintenance time by early detection of cracks or damage and the deterrence of the costly effects by failures which result in vehicle loss.

ORNL interns

- An undergraduate researcher from Virginia Tech (Susan Rankin)
- A post-Bachelor's intern from North Carolina State University as part of the GEM Fellowship Program (Mikayla Moody)

Interns holding TiO₂ nanoparticle coated carbon fiber spools

Susan Rankin (on left) and Mikayla Moody (on right)

Proposed Future Research

Next milestones entail switching from active sensing to passive sensing:

- Coat fibers with ferroelectric nanoparticles
- Evaluate the interlaminar shear strength changes
- Measure the power output of composites in response to strain or vibration
 - Measuring voltage and current output as opposed to resistance
- Integrate wireless sensing
- Reinforce thermoplastic matrices with passive sensing fibers
- Fabricate hybrid composite, passive sensing composite

Summary

- **Relevance:** Development a multifunctional fiber-reinforced composite with structural health monitoring capabilities and improved mechanical performance
- Approach: Nanoparticles deposited on the fiber surface via a continuous feed-through process
- Technical Accomplishments:
 - Demonstrated a roll-to-roll process to embed nanoparticles in the fiber sizing
 - Showed an interlaminar shear strength improvement of at least 10% (maximum increase was 14%) (Target date: Dec. 2019)
 - Demonstrated active sensing capabilities with at least a 20% improvement in sensitivity (actual improvement was 187%) (Target date: June 2020)
- Future work: Passive sensing with wireless communication

Milestones

Milestone/Deliverable Name/Description	End Date	Status
Fabricate multifunctional composites and perform mechanical testing	12/31/2019	Complete
Characterize the active sensing capabilities of the multifunctional composites	6/30/2020	Complete
Synthesize fibers with passive sensing capabilities	9/30/2020	On-Schedule
Fabricate a passive sensing, hybrid, multifunctional composite	12/31/2020	On-Schedule
Characterize the power generation of the hybrid, multifunctional composite in response to strain	6/30/2021	On-Schedule
Wireless sensing integration	9/30/2021	On-Schedule
Fabricate multifunctional composite structure with active sensing capabilities utilizing a thermoplastic matrix	12/31/2021	On-Schedule
Fabricate a passive sensing fiber-reinforced multifunctional composite using a thermoplastic matrix	6/30/2022	On-Schedule
Fabrication of a hybrid, multifunctional composite using a thermoplastic matrix	9/30/2022	On-Schedule

Go/No-Go Decisions

Name	Description	Date
	Develop and fabricate a fiber-reinforced composite with at least two different fibers that act as a self-powered sensor	12/31/2020
	Methods need to be developed to negate the need to physically adhere electrodes to the composite surface and to negate the need for wire leads to detect electrical changes	9/30/2021

End goal: Fabrication of hybrid multifunctional composites with integrated wireless sensing for strain, damage and creep detection

Thermogravimetric analysis

Dynamic Mechanical Analysis

Remaining Challenges and Barriers

Passive Sensing

- Deposition of ferroelectric nanoparticles on electrically insulating fibers
- Power generated from the ferroelectric nanoparticles needs to be sufficient to produce a measurable signal

• Wireless Sensing (by the end of FY21)

- This is the most high-risk, high-reward challenge for this project
- Wireless sensing would negate the need for physical electrodes making these multifunctional composites feasible in real world applications
- Extensive experimentation with the wireless communication is needed

